
COE CST Third Annual Technical Meeting:

Task 299: Nitrous Oxide Composite Case Testing

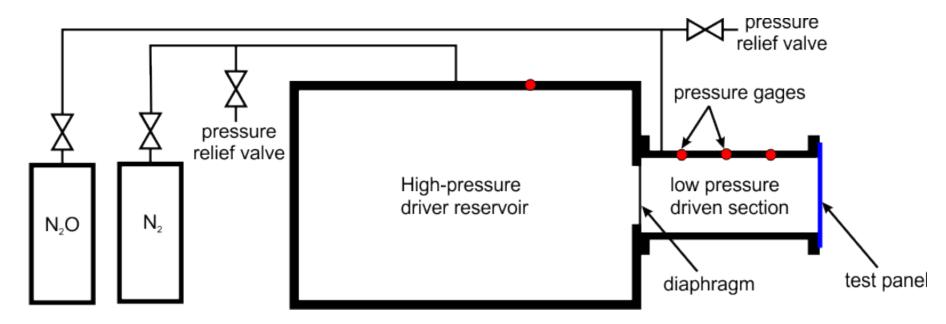
PI: Warren Ostergren
Co-PIs: Michael Hargather
Robert Abernathy
Andrei Zagrai

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results or Schedule & Milestones
- Next Steps
- Contact Information

Team Members

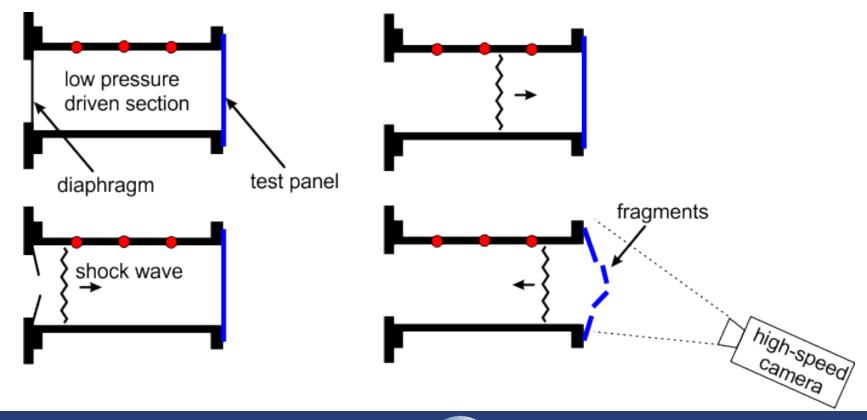
- PI: Warren Ostergren, Associate Professor of Mechanical Engineering, NMT
- Co-Pls:
 - Michael Hargather, Assistant Professor
 - Robert Abernathy, Computational Analyst, Energetic Materials Research and Testing Center (EMRTC)
 - Andrei Zagrai, Associate Professor
- Test Engineer
 - Paul Giannuzzi, Research Engineer, EMRTC
- Students:
 - Jesse Tobin MS in Mechanical Engineering
 - Steven Bayley BS in Mechanical Engineering


Purpose of Task

- Develop an understanding of fragmentation hazards from composite tanks used for fuel/oxidizer storage
- Objectives:
 - Test composite panels to understand fragmentation hazards
 - Develop methods to predict fragmentation conditions
 - Develop standard test procedures for composite materials under shock and high-rate loading
 - Develop analytical and computational models to compare to experiments
- Goals
 - Provide data to help set guidelines for safe distances during launch of commercial vehicles
 - Establish standard test procedures for high-rate loading of composites

Research Methodology

 Test flat panels of composite materials under dynamic, shock loading produced with a diaphragm rupture



- Benchmark facility with aluminum plates
 - Aluminum is used in lined composite tanks
 - Modeling of aluminum can be performed simply

Research Methodology

- High-pressure reservoir pressure = 3000 psi
- Low-pressure section represents the fuel tank, P = 750 psi
- Composite test panel on end of driven section will be fractured

Research Methodology

- Tests will be performed at EMRTC on the NMT campus
 - Initial tests with aluminum panels as benchmark
 - Follow on tests with composite panels
- Data recorded:
 - Pressure measurements in low-pressure section to measure shock loading and dynamic pressure
 - High-speed video showing fragmentation of test panels
 - Acoustic emission measurements on the test panel surface
 - All data synchronized to allow analysis of dynamic failure
- Computational simulations will be performed in CTH
 - Pressure-time history on test panels
 - Estimation of fragmentation/deformation regimes

Results or Schedule/Milestones

- Test fixture currently under construction
 - High-pressure section ready
 - Low-pressure section in final machining stages
 - Pressure gages and all instrumentation have been obtained
- Instrumentation being tested in laboratory
- Composite material selection
 - Obtained samples of composite N₂O tank materials
 - Selection of representative material in progress

Results or Schedule/Milestones

- Testing expected to begin in December
 - Initial aluminum panel tests expected to be complete by mid-January
 - Initial four tests of composite material to be complete by end of March
- Initial computer simulations have begun
 - Computational model of entire system
 - Accurate model for aluminum

Next Steps

- Testing to be performed starting in December
- Computational model of aluminum tests complete before testing commences
- Long term:
 - Selection of a variety of composite materials to represent wide range of variables
 - Incorporation of data from composite tests into computational model
 - Test of full composite N₂O tank
- Establish safety standards for dynamic loading of composite tanks

Contact Information

New Mexico Tech
 Mechanical Engineering
 Department
 www.nmt.edu/~mecheng

- Research Team:
 - Warren Ostergren warreno@nmt.edu
 - Michael Hargather mjh@nmt.edu
 - Robert Abernathy robert@emrtc.nmt.edu
 - Andrei Zagrai azagrai@nmt.edu